
android design guidelines
version 1

February 2011

written by Adam Beckley



Mutual Mobile Android Design Guidelines 2

table of contents

introduction ..............................................................3

sizes and resolution ..................................................5

UI elements ..............................................................7

icons ........................................................................13

dialog and listview icons  ..........................................23

widgets .....................................................................24

draw9patch ..............................................................27

gestures ...................................................................30

gingerbread ..............................................................30



Mutual Mobile Android Design Guidelines 3

introduction
This is a Programmer’s life we are just living in it.

When Doug Bowman, former creative Director for Google resigned, he posted a quote on his 

blog that in my opinion sums Google up perfectly. 

“Yes, it’s true that a team at Google couldn’t decide 
between two blues, so they’re testing 41 shades 
between each blue to see which one performs 
better.”

Android is the creation of technicians and analytical minds, super genius programmers who 

someday will probably unlock the secret to creating human life with code, modern day Robin 

Hoods who give mobile carriers an open source doorway to the kingdom of apps.

But apple gets them because of their unclear philosophy of design.

Android is crushingly programmer heavy. In my opinion, they have not given enough consider-

ation to asset creation or creative direction. With apple, the moment you start designing an app, 

you know how they want you to build it. Their design plans are so complete that you can im-

mediately access it. I often dream that my house is an iPhone app; it has become comfortable. 

With Android, there is a false sense of freedom to do whatever you want. Unfortunately, when 

you start taking all the various screen sizes and resolutions into account, it doesn’t realistically 

pan out that way. As a designer, I like to create the whole picture. I look at designing apps as 

making a little painting that I will carve up into pieces for another to make into a collage. Android 

thwarts this. To successfully design an Android app, the designer should tinker on the little 

things and let development sort out the rest.

Designing an Android app needs to be a constant collaboration between design and develop-

ment. The look and feel of the app should be discussed by both parties from the beginning. Ad-

ditionally, app creators should target specific phones. There is too much trial and error involved 

in asset creation to be left squarely in the hands of a designer and this can lead to resource 

problems. Since many assets can be created with XML, the design responsibility falls to both 

parties. Once a look and feel is decided upon, the designer would be smart to take a tell-me-

what-you-need-and-I’ll-make-it approach.

An Android app can look as lush and stylized as an iPhone app with the right amount of plan-

ning. The process to achieve this will be much slower as assets go through the crucible of 

multiple resolutions (and functionality is placed on the racks for the various devices). It may take 

a bigger budget and softer touch, but it is possible and worthwhile to make a great looking app.



Mutual Mobile Android Design Guidelines 4

It is more than just removing the back button.

As a designer, my comfort comes from a sense of designing what I know. This is why when I 

started designing apps, the first thing that came to mind were websites. It makes sense. There 

are enough similarities. Both rely on buckets of information. My very first app design was ex-

tremely poor, relying on drop-down menus and an ill-placed home button. This strategy turned 

out to be very poor and it made for a project that immediately needed to be retooled. It should 

have been obvious that since the iPhone uses completely different UI elements and conventions 

that the web approach would not work. With this wisdom in mind, it is baffling that people are 

now porting iPhone apps to the Android, keeping them consistent with their iPhone brethren 

and blatantly disregarding the functionality and 

feature set native to Android. It is incorrect to 

consider an app to be portable from iPhone to 

Android. The differences are many and what 

principles and elements may work great for the 

iPhone don’t speak to Android peculiarities or 

functionality. Many of the differences are pro-

grammer-centric, however, asset management 

must be given a completely different treatment to 

do the device justice, as well.

I was working on a “port” of an established 

iPhone app, and I learned the error of my ways. 

The assets that I made were consistent with the 

iPhone. This turned out to be a headache for 

the developers and inevitably a set back for the 

client. What I took away from this is that even if 

a look and feel is established, the moving pieces 

need to be built from the ground up to accom-

modate the phone. In the Android world, we need to define a boundary between buttons and 

icons, reassess what needs to be designed and what is better left programmed, and learn to 

remain open-minded, patient and exploratory. The Android is a curious frontier and while there 

are definitely rules and standards, they are not always obvious

As a disclaimer, I am a designer, and while my knowledge of programming has increased a 

fraction while creating a document, it should be known that Android makes it difficult for anyone 

who is not a programming to decipher their rules. So with that in mind, understand that while 

my research has been abundant, this document should be considered a designer’s translation 

of Android and therefore subject to error.

While it certainly is not my place to set a standard for Google, in this document I intend to at 

least create a guideline for us to follow.

This chart displays the Current Distribution of operating systems as 
collected at the beginning of February 2011

Android 2.1

Android 1.6

Android 1.5

Android 2.3

Android 2.2



Mutual Mobile Android Design Guidelines 5

Know your market.

Worldwide, there are over 90 Android devices that run 

the gambit of operating systems. While there are still a 

good amount of devices running Android 1.6 and below, 

this document is more specifically directed at Android 

operating system 2.1 and on. 

You will notice that Android 1.6 is fading out. Unless a 

client specifically asks for the application to be designed 

for an earlier platform, it should be presumed that we 

are developing for 2.1 and on. 

In future versions of this document, I will go into detail 

about designing for 1.6 and earlier. There are some 

noticeable differences. For instance, icons are handled completely differently than is mentioned 

in this document.

sizes and resolution
Designing for multiple screen resolutions and sizes

The source of 90% of Android design woes come from the multiple resolution and screen sizes. 

If assets are not created properly, they can create a heartbreaking adventure in iterations. With 

that ill-fated port that I mentioned earlier, while the assets looked fine on most devices, on a few 

they appeared dithered and blurry. What made it so confounding was the lack of a clear indica-

tion as to what I did wrong, so my only solution was to try and try again.

The fact that you are designing for multiple resolutions should be in the front of your mind 

through the entire design.

This should weigh into the consideration of
• what your buttons look like

• what sort of gradients you use

• how complex your icons are 

• what sort of backgrounds you make. If you make one at all, as a lot of this can be handled 

better by a developer. 

Generalized Screen Sizes and Resolutions.

Due to the widely varying array of devices, it is next to impossible to pinpoint the specific reso-

lution that you should be designing for, with this in mind Android has charted four generalized 

resolutions and four generalized densities. It breaks down like this.

Platform API Level Distribution

Android 1.5 3 3.9%

Android 1.6 4 6.3%

Android 2.1 7 31.4%

Android 2.2 8 57.6%

Android 2.3 9 0.8%



Mutual Mobile Android Design Guidelines 6

There are four generalized sizes.
• Small   (2-3 inches)

• Normal (3-5 inches)

• Large   (4-7 inches)

• X-Large  (7-10 inches) - tablets only

And four generalized Resolutions
• LDPI (100-120 dpi) 

• MDPI (120-160 dpi)

• HDPI (160-240 dpi)

• XHDPI (240-320 dpi)

For the most part, screen sizes and densities correlate. 

Regardless of the actual screen size or density, applications are programed into these four categories.  



Mutual Mobile Android Design Guidelines 7

How This Effects Layout.

When creating wireframes for an Android app, it is probably wise to work your layout into mul-

tiple sizes to make sure that your application will work across as many platforms as possible. 

Obviously, this will make for a longer project, but the due diligence will make for a better appli-

cation. It may not be the best course to base your design exclusively on the top devices - espe-

cially based on who your audience is.

How This Effects Design.

You have two choices. 
Keep the design simple and squeaky clean. Don’t use intense gradients and consult your de-

veloper about the background theme. Or be prepared to make custom assets for each of the 

various resolutions and screen sizes. If you want to make that fancy background, do it, but be 

prepared to make a ton of assets.

Bottom Line.
When designing for Android, not taking the complexity of density and screen size into consider-

ation will make the project more difficult. I repeat; bring development into the process early on 

to test the art, layout and elements before completion.

UI elements
For some reason Google has remained vague about any sort of sizing or rules for their UI ele-

ments. While I respect the lack of limitations, when you consider the various densities and 

screen sizes, it would make sense to establish at least a loose guideline. I have spent countless 

hours googling terms such as “Awesome Android Tab” and “Customized Menu”. I took a myriad 

of screenshots and measured the various navigation elements and after days of research, I have 

come up with something. I don’t want to call it a standard, because that it is a bit misleading. 

Instead, I will call it a guideline.

The Tab Bar

I don’t know exactly what to say about the Tab Bar. We work 

with them everyday. They serve the same purpose with Android 

as they do with the iPhone. With Android, they can be top or 

bottom aligned. 

There is a standard-ish Android Tab Bar, but it is somewhat unsightly. The prettier apps usually 

opt to make their own.

The standard tab bar. 



Mutual Mobile Android Design Guidelines 8

The Consistent Size.

None of my research has turned up a pixel size for the tab bar. Not a standard, not 

a regular, not a suggested. So after measuring a sampling of screens, I have come 

up with my own standard or “consistent”.

Consistent Android Tab Bar sizes
• HDPI - 480x96

• MDPI - 320x64

• LDPI - 240x48

It Came from Cupertino

Perhaps too editorial for this document, but, Android applications that try to look 

like iPhone applications don’t work so well. I would argue that in the instance of the 

Android, the Tab Bar belongs on top for a couple of reasons. Functionally, the menu 

comes from the bottom, obscuring the tab bar. Additionally, the hierarchy of tasks 

and activities is set up completely differently, using option and contextual menus. 

It begs the question -“Who are you are making the app for?”  iPhone navigation is 

most likely not as intuitive for seasoned Android users, since these two user groups 

generally don’t overlap.

The Options Menu.

The option menu stores activities. From here, you will be able to reach settings, 

save, logout, etc.

To compare it to the iPhone, it contains what you would find in the navigation bar, 

mixed with what you would find in an action sheet. It is somewhat customizable. It 

can be skinned but the size will not change. The width is adjustable based on the 

number of buttons and the size of the screen.  

The Consistent Height
• HDPI - 100x

• MDPI - 66x

• LDPI- 50x

The Importance of being an Options Menu.

The importance of the options menu cannot be understated. The complete open-

ness of the Android operating system demands its need. All of the functionality that 

would rest in a nav bar, toolbar or action sheet on the iPhone should exist within the 

options menu. The inclination, when creating a design for an Android app based on 

an iPhone app is to maintain the semblance of a nav bar. This should be discour-

aged.

Slick and transparent

Not so much



Mutual Mobile Android Design Guidelines 9

This Facebook screen is a tiny 240x320. And yes, you could argue that there are buttons at the 

top of the screen that resemble a toolbar. But if you consider the additional functionality Face-

book offers on the iPhone; the ability to logout, to select favorites, 

etc, it becomes clear that presenting that much functionality would 

be unwieldy and messy. Thus, the options menu. 

When designing an Android app, consider hiding all functions that 

edit your current screen in the options menu. 

The Context Menu.

The Context Menu is similar to the right click on the desktop. The 

user will touch and hold to bring up the menu which will provide 

commands that pertain to the selected activity. 

In email, for example, touching and holding a particular email will 

bring up a context menu to delete or archive the email.

They are customizable, but this should be a conversation between 

design and development as far as the worth of customization.

While the width of the cells are adjustable, the standard 
height is;

• HDPI:    100 px

• MDPI:    66 px

• LDPI:     50 px Sleek, Pretty, Hidden

vs.



Mutual Mobile Android Design Guidelines 10

When to use an Option Menu. When to use a Context Menu.

Selecting the right kind of menu can be a bit confusing. To sum it up, any activity that is global 

to the app should either go in the options menu or the list view. Activities that pertain solely 

to the content of a cell in the list view would summon a context menu. Option menus contain 

activities such as composing an email or logging out of an application. Context menus contain 

activities such as deleting a specific email, viewing or editing a contact or sending a text mes-

sage to the specific contact.

Prioritizing Operations.

Due to the often limited screen heights it is important to place most frequently used opera-

tions first. For example, if you have a search function in your Option Menu, (this is where search 

belongs, by the way) it should most likely be the first option available. Settings is considered 

another high priority function in the Option Menu.

No Context Menu is a good Context Menu.

In some instances, it is unavoidable, such as with your contact book, where you need to have a 

slew of options attributed to each field of the list view, however, if you can avoid using a context 

menu, it is advisable that you do so. As the Context Menu lacks any physical representation, it 

is not intuitive to the user. Android suggests duplication of functionality in some instances, such 

as the contact book, where the user can get to the phone number by tapping and holding the 

contact and by tapping the phone number in the list view. Use the context menu for advanced 

user functions.

Short Names in the Option Menu.

Much like the iPhone Springboard, The Android option menu will truncate long names. So keep 

it short.

Paper beats Rock. Dialogue Beats Option Menu.

When a Dialog box is being displayed, it is assumed that the Menu button is disabled. A Dialog 

box is usually something that is important and must be handled before global functions should 

continue.

Dim or Hide.

There are times when an item that is in the option or contextual menu will not pertain to the 

context at hand. Android’s example is the forward button, which obviously doesn’t work until 

after the back button is pressed. If you have an instance like this in the options menu, dim it out. 

If you have an option like this in the contextual menu, hide it completely.



Mutual Mobile Android Design Guidelines 11

Dialog Boxes.

Unlike the alerts in iOS, the Android Dialog box is customizable. It can 

bear any theme and its size is adjustable to the content. As usual, be 

careful with this often unnecessary customization.

In Android, a dialog box is used for a whole slew of functions 
such as:

• searching

• alerts 

• progress 

• status bars, 

• color wheels 

• date pickers

When a dialog box is up, most of the functionality of the app is dis-

abled, including the search bar. So when designing with dialog boxes in 

mind, consider if it is worth the disabled functionality. 

The category of dialog contains a variety of different types of modals. 

Alert Dialog

This type is similar to the alert on the iPhone, however, It can take a 

couple of different forms. An alert Dialog is used to display a warning, a 

text message, or a choice (such as quitting and application).

An alert can either have up to three buttons or be a list of selectable 

items, usually displaying check boxes or radio buttons.

Progress Alert.

The progress alert comes in two forms.

The spinning wheel represents an undefined progress and the box will 

be present until its function is complete

The progress bar conveys to the user a set amount of time or activities 

that need to occur before a task is complete.

A Custom Color Picker

Examples of Alerts



Mutual Mobile Android Design Guidelines 12

Android’s fantastic what-you-see-is-what-you-get date and 
time picker.

Android’s date and time picker are not much to look at. Certainly they are 

sparse, utilitarian and functional, but also uninspiring and dull.

It is quite possible to come up with a new rendition of this bland dialog. That 

should be a discussion between designer and developer as creating custom 

dialogs with this much functionality can be an expensive and time consuming 

venture. 

In the case of a short time line or smaller budget, this is what you’ve got. Enjoy 

it!

Here is an example of a custom date picker. Not fantastic, however it is a vast 

improvement on the standard.

List Views

Customizing list views can be a bit tricky. In development, list views are trans-

parent fixtures over the default background (the dark # #FF191919). By default, 

list views have a  faded edged gradient at the top of the screen. While this ef-

fect is flashy and neat looking, initially it caused all sorts of problems for drawing performance.

To counter this, Android came up with a script cache color hint. What this does is set RGB color 

by default to the background values.

Unfortunately, this has terrible results when the user swipes through a list on a custom back-

ground.

To avoid this wretched effect, it should be noted in the document for developers that the cache 

color hint should be disabled. It is considered disabled if set to #000000, thereby transparent. 

It is important to note, 

however, that without the 

cache color optimization, 

the effect on performance 

can be an issue. Therefore, 

some consideration about 

the utility being performed is 

important to keep in mind.

Run of the mill List View Custom List View Botch JobA custom List done right.



Mutual Mobile Android Design Guidelines 13

icons
Icons vs Buttons

I will share the most important lesson that I learned from that ill-fated iPhone port. In Android, 

there is a clear distinction between an icon and a button. They need to be treated as different 

assets. With the iPhone, we balance between Tab Bar icons and custom widgets that include 

labeled buttons, however with Android, these buttons need to be considered two assets. The 

reason for this is that Android assets need to be draw9patched in order to accommodate that 

various screen sizes (see draw9patching). 

Android icons can be any shape because they sit in a square bounding box the are essentially 

gridded out. Later in the document, we will discuss Android standard bounding sizes, but at the 

moment let’s look into creating custom elements and how to create correct custom bounding 

boxes.

When creating custom Android navigation, such as a tab bar, it is important to consider the icon 

to be the button and the tab bar itself to be a background. Gradients can not be easily draw-

9patched without losing their finesse.

For example:

This is your tab bar. It is created for HDPI so its resolution comes in at 480x72.  This element 

can be used in development without draw9patching. It should be considered a background 

without any functionality. 

This is your icon. It should be roughly 48x48 before effects. The area that the Icon takes up 

should be 1/3 of your tab bar. 

• So your bounding box should be 160 px wide and 75 px high. The red box indicates this.

• The yellow box indicates the layers of effects. In this instance, the icon has a 2 pixel outer 

glow and a 2 pixel drop shadow. 

• The Blue box indicates the asset itself. In this instance it is 48x48

When slicing the asset, the PNG should be created with the bounding box taken into consid-

eration. In this instance, even though the icon is 48x48, the PNG needs to be 160x72. This will 

make draw9patching much easier.

Effects box

Button box

Icon box

Your Icon



Mutual Mobile Android Design Guidelines 14

Icons, Icons, Icons

Android is particular about icons and has set a fairly rigid guideline on icon creation. The next 

section is a summary of Android’s icon guidelines from their developer website. 

Android is designed to run on a variety of devices that offer a range of screen sizes and resolu-

tions.  When you design the icons for your application, it’s important to keep in mind that your 

application may be installed on any of those devices.

It is necessary to design a set of icons for each of the screen densities. Below is a chart of the 

standard sizes of each type of icon.

Also, since most buttons need to be draw9patched, it is important to consider that the icon is a 

separate asset from the button itself. All Icons should be saved as a transparent PNG.

Launcher Icons

Much like the App Icon for the iPhone, the Android app is ac-

tivated with the Launcher Icon. The user opens the Launcher 

by touching the icon at the bottom of the Home screen, or by 

using any hardware navigation controls, such as a trackball or 

d-pad. The Launcher opens and exposes the icons for all of 

the installed applications.

Android 2.0

With Android 2.0, launcher icons are recommended to be 

front-facing, rather than the three-quarter perspective of ear-

lier operating systems.

The Standards and Styles.

When it comes to designing the launcher, Android has a sur- Standard Android Icons



Mutual Mobile Android Design Guidelines 15

prisingly high number of rules. While no one is going to frown upon you if you break these rules, 

this is what Android expects out of a launch icon.

According to the Android’s Guidelines, launcher icons should be modern, clean and contempo-

rary. They should not appear aged and should avoid overused symbolic metaphor. They should 

be simple and iconic. 

The Android icon is caricatural in nature. Simple and exaggerated so that they are clear on the 

smallest resolutions. They should be geometric and organic and most importantly, textured. Ad-

ditionally, they should be top-lit.

Adventures in Bounding Box pt. 1; The Launcher Icon

The reason that Android icons can be practically any shape has to do with the 

fact that their icon falls on a grid. To make an icon correctly, these rules must be 

followed. This applies to every icon you make. The figure on the following page 

displays how an Android icon is set up.  

In this instance, it is the launcher, but it applies to all icons. 
• The red box is the bounding box for the full asset.

• The blue box is the bounding box for the actual icon of any shape.

• The orange box is the recommended bounding box for the actual icon when the content is 

square.  

The box for square icons is smaller than that for other icons to establish a consistent visual 

weight across the two types.

Learn to love this box



Mutual Mobile Android Design Guidelines 16

The sizes are as follows:

Launcher icon dimensions for high-density (HPDI) screens:

• Full Asset: 72 x 72 px

• Icon: 60 x 60 px

• Square Icon: 56 x 56 px

Launcher icon dimensions for medium-density (MPDI) screens:
• Full Asset: 48 x 48 px

• Icon: 40 x 40 px

• Square Icon: 38 x 38 px

Launcher icon dimensions for low-density (LDPI) screens:
• Full Asset: 36 x 36 px

• Icon: 30 x 30 px

• Square Icon: 28 x 28 px

Texture and Color

To be consistent with Android’s standard, the launcher icon should appear tactile and 

consist of primary colors. If you look at the examples, you will see that they usually com-

bine two neutral colors in high contrast. Saturated colors do not tend to look good on the 

Android springboard. Android has given some examples of colors and textures that do 

well for launcher icons. The examples are on the next page.

All of these textures can be found at http://developer.Android.com/guide/practices/ui_

guidelines/icon_design.html#templatespack

The Launcher Icon Drop Shadow Effect

In order to keep your icon consistent with the others on the spring board. A very specific drop 

shadow should be used. Below are the drop shadow amounts for photoshop and illustrator at 

all screen resolutions.

Photoshop
• HDPI: #000000 75% opacity, Distance=1.5 Size=4.5px, Angle=90

• MDPI: #000000 75% opacity, Distance=1 Size=3px, Angle=90

• LDPI: #000000 75% opacity, Distance=.75 Size=2.25px, Angle=90

Illustrator:
• HDPI: Multiply, 75% opacity, x=0, y=1.5, Blur=4.5px

• MDPI: Multiply, 75% opacity, x=0, y=1, Blur=3px

• LDPI: Multiply, 75% opacity, x=0, y=.75, Blur=2.25



Mutual Mobile Android Design Guidelines 17

Android Supplied Examples of good colors and textures



Mutual Mobile Android Design Guidelines 18

Menu Icons.

The menu icons are used in the option menu, accessible by pushing the menu button. Unlike, 

the tab icon, there is no need to design two states, one icon will do. Because the options menu 

is a uniform color, it is recommended that your icon remain monochrome, preferably gray. Since 

the icon will need to be draw9patched, it should be saved as a transparent PNG.

The Gingerbread Conundrum

We have already discussed how three sets of assets must be created to account for the various 

DPIs. Now with Android 2.3, another variation has been established.

With Gingerbread, Android is introducing a whole new level of UX in order to establish as much 

of a standard as possible and because of this, it handles menu icons differently. In designing 

icons, you will find that icons for 2.2 and below will appear inverted in color on 2.3.

Designing Menu Icons for 2.3

With Gingerbread, there are a couple of changes that need be noted; 
• Icons have a larger safe frame; icon content is smaller within the full asset. Final asset sizes 

have not changed.

• The color palette is slightly lighter.

• No outer glow effects are applied. 

• Menu icons can now be rendered on either dark or light backgrounds.

The following guidelines describe how to design menu icons for Android 2.3 (API Level 9) and 

later.

Adventures in Bounding Box pt. 2; The menu icon

Android menu icons can be any shape just so long as they fit into their bounding boxes. Since 

the menu bar is a fixed size, it is probably a good idea to use the Android standard sizes for 

your icon. 

To reiterate;
• The Red Box is the full asset

• The Blue Box is the recommended bounding box for the actual icon

• The Orange box is the bounding box for a square icon.



Mutual Mobile Android Design Guidelines 19

Menu icon dimensions for high-density (HPDI) screens:
• Full Asset: 72 x 72 px

• Icon: 48 x 48 px

• Square Icon: 44 x 44 px

Menu icon dimensions for medium-density (MDPI) screens:
• Full Asset: 48 x 48 px

• Icon: 32 x 32 px

• Square Icon: 30 x 30 px

Menu icon dimensions for low-density (LDPI) screens:
• Full Asset: 36 x 36 px

• Icon: 24 x 24 px

• Square Icon: 22 x 22 px

To keep consistent with the Android standard, menu icons should be flat, face forward, and 

remain grayscale. 

Menu Effects

Listed below are the specifications of effects in order to keep your menu icon 

consistent with the Android standard:

Corner rounding: when appropriate
• HDPI - 3 px corner radius

• MDPI - 2 px corner radius

• LDPI - 1.5 corner radius

Gradient: 
• 90°, from #8C8C8C to #B2B2B2

The Following effects are for Photoshop only at Medium Dpi.

Inner shadow: 
• #000000, 20% opacity

• angle 90°

• distance 2 px

• size 2 px

Inner bevel: 
• depth 1%

• direction down

• size 0 px

• angle 90°

• altitude 10°

• highlight #ffffff, 70% opacity

• shadow #000000, 25% opacity



Mutual Mobile Android Design Guidelines 20

Android 2.2 and Earlier

While there are not a whole lot of differences, there are enough to take notice.  

All icons for 2.2 and earlier require a slight pixel safe frame
• HDPI: 48X48, 6px Safe Frame

• MDPI: 32X32, 4px Safe Frame

• LDPI: 24X24, 3px Safe Frame

Effects 

Android suggests that you create the icon in Illustrator and the bring over to Photoshop for ef-

fects. 

Menu icons are flat and front facing . A slight deboss and some other effects, which are shown 

below, are used to create depth.

Light, effects, and shadows for launcher icons.
• 1 - Front part: Use fill gradient from primary color palette

• 2 - Inner shadow: black | 20 % opacity; angle 90° | dis-

tance 2 px; size 2 px

• 3 - Outer glow: white | 55% opacity; spread 10% | size 3 

px

• 4 - Inner bevel: depth 1% | direction down size 0px; angle 

90° | altitude 10°; highlight white 70% opacity; shadow 

black 25% opacity

Color palette
• White; r 255 | g 255 | b 255; Used for outer glow and 

bevel highlight.

• Fill gradient; 1:  r 163 | g 163 | b 163; 2:  r 120 | g 120 | b 

120; Used as color fill.

• Black; r 0 | g 0 | b 0; Used for inner shadow and bevel shadow.

Examples of menu icons



Mutual Mobile Android Design Guidelines 21

Tab Icons

There are few differences between the menu icon and the tab icon, except that with the tab 

icon, two assets need to be created to differentiation between active and inactive.

Adventures in Bounding Box pt. 3; The Tab Icon

As we have already discussed the reason for bounding boxes, I will merely present to you the 

sizes.

Tab icon dimensions for high-density (HDPI) screens:
• Full Asset: 48 x 48 px

• Icon: 42 x 42 px

Tab icon dimensions for medium-density (MDPI) screens:
• Full Asset: 32 x 32 px

• Icon: 28 x 28 px

Tab icon dimensions for low-density (LDPI) screens:
• Full Asset: 24 x 24 px

• Icon: 22 x 22 px

Tab Icon color and effects

Tab Icons should be matte and forward facing.

Inactive
• Fill Color  #808080

• The inner content should be subtracted and left transparent in the PNG.

Active
• Fill Color #FFFFFF

• The Inner Content should be subtracted and let transparent in the PNG.

• Outer Glow. #000000, 25% opacity 3 px.

Status Bar Icons

The Status Bar icon is used to represent notifications from your app. Status bar icons 

have changed with Gingerbread, so it will be important to create assets, not only just 

for the different densities, but also for the different operating systems.



Mutual Mobile Android Design Guidelines 22

Android 2.3 

Status bar icons are tiny and should be made using simple shapes and forms.

Adventures in Bounding Box pt. 4; The Status Bar Icon

Status icon dimensions for high-density (HDPI) screens:
• Full Asset: 24 x 38 px

• Icon: 24 x 24 px

Status icon dimensions for medium-density (MDPI) screens:
• Full Asset: 16 x 25 px

• Icon: 16 x 16 px

Status icon dimensions for low-density (LDPI) screens:
• Full Asset: 12 x 19 px

• Icon: 12 x 12 px

Status Icon Effect

Fill gradient:  
• 90°, from #828282 to #919191

Inner shadow: 
• #FFFFFF, 10% opacity

• angle 90°

• distance 1px

• size 0px

To get this effect in Illustrator, the icon should be scaled up and the effect 

should be expanded.

Inner content:
• Inner content should be subtracted and left transparent in the PNG. 

Android 2.2 and Earlier

In earlier operating systems, the status bar icon is boxier and set at 25 x 25 with a two pixel safe 

frame. They should have corners rounded by 2 pixels.

Rounded corners must always be applied to the base shape and to the details of a status bar 

icon shown in the figure below.



Mutual Mobile Android Design Guidelines 23

Status Bar Effects

Status bar icons should be high contrast and face forward. Due to their size, it is advisable to 

work with the effects in photoshop.

1 - Front part:  
• Use fill gradient from primary color palette

2 - Inner bevel: 
• depth 100% | direction down

• size 0px | angle 90° |

• altitude 30°

• highlight white 75% opacity

• shadow black 75% opacity

3 - Detail: 
• white

4 - Disabled detail: 
• grey gradient from palette

• + inner bevel: smooth | depth 1% |

•  direction down | size 0 px | angle 117° | 

• altitude 42° | highlight white 70% | no shadow

Color palette

Only status bar icons related to the phone function use full color; all other status bar icons 

should remain monochromatic.

dialog and listview icons 
Unlike the iPhone alert, the Android dialog is customizable. Here are some guidelines for build-

ing dialog icons. Dialog and listview icons are pretty much the same except that Android’s 

convention is to give the listview icon a slight inner shadow rather than a drop shadow.

Sizes

All dialog icons have a 1 pixel safe frame 

Dialog icon dimensions for high-density (HPDI) screens:

• Icon: 48 x 48 px

Dialog icon dimensions for medium-density (MPDI) screens:
• Icon: 32 x 32 px



Mutual Mobile Android Design Guidelines 24

Dialog icon dimensions for low-density (LDPI) screens:
• Icon: 24 x 24 px

Dialog and Listview Effects

These are the effects for an icon made for a standard Android Alert. The have a light gradient 

and a slight drop shadow.

Dialog Icon

1 - Front part: gradient 
• overlay | angle 90°

• bottom: r 223 | g 223 | b 223

• top: r 249 | g 249 | b 249

• bottom color location: 0%

• top color location: 75%

2 - Inner Shadow:  
• black | 25% opacity 

• angle -90°  

• distance 1 px  

• size 0 px

Listview Icon

1 - Inner shadow:
• black | 57 % opacity 

• angle 120° 

• blend mode: normal  

• distance 1 px  

• size 1 px 

2 - Background:
• black | standard system color

These icons are displayed in list views only.

widgets
One of the most interesting things that the Android delivers is the widget (not to be confused 

with a widget, which can be anything that triggers functionality). The widget is like a mini ap-

plication extension of the app that runs on the home screen of the Android. The widget displays 

the applications most relevant information at a quick glance. Users pick the widgets they want 

to display on their Home screens by touching & holding an empty area of the Home screen, 

selecting Widgets from the menu, and then selecting the widget they want.



Mutual Mobile Android Design Guidelines 25

The widget has three main controls a bounding box, a frame, 

and the widget’s graphical controls and other elements. The 

important thing to note, is that a widget has ONE function.  The 

function maybe  playing music, telling time or informing you of 

new Google voice messages. The potential for different widget 

uses is immense, as they allow the app to multi task in clear 

sight without being activated.

Smaller is Better

Because a widget is going to remain on the Home screen, it is 

important to try to create the clearest display of information in 

the smallest size possible so not to become a nuisance to the 

user.

Designing a Widget.

Select a bounding box size for your widget.

All widgets must fit within the bounding box of one of the six supported sizes, or better yet, 

within a pair of portrait and landscape orientation sizes. This is so your widget looks good when 

the user switches screen orientations.

Three States for your Widget Buttons.

If your widget has any toggle functionality, (such as a music player,) make sure that the buttons 

have three states: inactive, pressed and active.

Widget Sizes

The Android Home Screen is based on a screen grid of 4 x 4 and these correspond to the di-

mensions of the widget bounding boxes. Make sure your content does not extend to the edges 

of the dimensions, rather that it is framed in the bounding box. Widgets can be skinned, but it 

might be wise to use the standard Android templates to at least frame your functionality. These 

templates can be found at http://developer.Android.com/guide/practices/ui_guidelines/wid-

get_design.html#file

Everyone loves telling time



Mutual Mobile Android Design Guidelines 26

In Portrait Mode, each cell is 80 x 100 pixels. With this in mind the standard wid-
get sizes are 

• Cells Pixels

• 4 x 1 320 x 100

• 3 x 3 240 x 300

• 2 x 2 160 x 200

In Landscape mode, the each cell is 106 x 74. The standard widget sizes are;
• Cells Pixels

• 4 x 1 320 x 100

• 3 x 3 240 x 300

• 2 x 2 160 x 200



Mutual Mobile Android Design Guidelines 27

Keep in mind that these sizes are only Android’s suggestions 

and there are some instances of Widgets that take up more cell 

space. The MixZing widget, for example is a popular dynamic 

music playing widget that takes up 4 x 4, in other words the 

whole screen.

Widget Hassles.

Like most graphic elements for the Android, widgets have their 

sets of complications as well. For instance, most backgrounds 

will have to be draw9patched. With this in mind, make sure that 

the corners of the bounding box have the minimal amount of 

gradient possible. 

Also, on devices with a low pixel depth, graphics have the pro-

pensity to dither and band. This is something that can be fixed by 

developers through a “proxy” drawable. 

As with most complicated graphics, this should be a conversation 

between artist and developer on finding the best approach.

As we move forward with Android apps, we should consider how 

we can play with the widget concept. What sole functionality do 

user’s want from a given app and how do we present it so it is 

constantly captivating.

draw9patch
Due to the multitude of devices and resolutions, certain assets need to be draw9patched. 

Draw9patching, or 9-slicing is the action of selecting certain portions of a PNG that will be 

allowed to stretch and expand, leaving the rest of the image intact. You should create draw-

9patched assets if they are solid colored, such as a button or tab, or  if they are on a transpar-

ency, such as an icon. You should never attempt to draw9patch a complex image, such as one 

that contains effects or one that has a rich gradient, as the complexity of the 

image will certainly be compromised. 

This is an example of an asset that should be draw9patched   

  

This is an asset that absolutely should not.

Full Screen Widget



Mutual Mobile Android Design Guidelines 28

The program used to draw9patch can be obtained by downloading the Android SDK from 

their developer website at http://developer.Android.com/sdk/index.html and should be by any 

designer taking on an Android project. Draw9patching takes some experimentation. In my 

searches, I found very few how to guides and settled on a youtube video by a designer with a 

mumbling problem. I will attempt to explain the process on the next page.

This is what the draw9patch tool looks like. I have intentionally chosen a PNG that 

should not be sliced to emphasize when this procedure should not be done. To get started,  

drag the PNG into the work area. 

The right pane of Figure 1 displays what an asset looks like when it is 9patched and scaled. In 

Figure 2, the PNG has not been scaled yet. If the assets is used without draw9patching, this is 

how the image will appear on different devices.

These are the very simple tools to the draw9patch program. Not a terrible 
amount of options.

• A - The slider will zoom into your main work space. 

• B - Show Lock will display the nondrawable area of the graphic on mouse over.

• C - This will highlight the content area in the preview images.

• D - Patch Scale will display how your image looks at different scales.

• E - Show patches will show you the stretchable patches in your main work space.

Figure 1 Figure 2.

A B

ED

C



Mutual Mobile Android Design Guidelines 29

When you drag your image into draw9patch, it will create a 

1-pixel border around your image. This pixel space will be the 

area in which you draw your patches.

• A - Click your mouse on the top and left side to choose 

the areas that will be stretchable. In this image everything 

inside the green box will remain untouched regardless of 

the dimension of the device and only the frame itself will 

stretch. Left click the stretch pins to erase

• B - Click and drag your mouse on the right and bottom 

side to select the area of the image that will be affected by 

the draw9patching.

This takes a good amount of experimentation to do right. And 

unfortunately, even if you think it looks perfect, it will very likely 

take a couple rounds of conversation with the developer to get 

the asset right.

If you have draw9patched it correctly, the preview of the asset 

will display something like this.

Now, as I said earlier, gradients do not stretch well. The figure 

to the right displays what happens, reinforcing the notion that 

icons and buttons must be considered different assets.

When you save your PNG the file type will change to a 9.PNG. 

This is the is deliverable file.

A B



Mutual Mobile Android Design Guidelines 30

gestures
After hours wracking my brain against the illuminati-esque coder speak of the Android Devel-

oper Guidelines and trying to research the scope of Android Gestures, I, your humble narrator, 

have decided that I need to speak to a developer to gain insight. Aside from the standard tap, 

double tap and tap and hold, it would appear that you can program any sort of gesture, such as 

a spiral or a squiggly line. 

This is probably immensely awesome. If only my little designer brain could comprehend it.

Look forward to reading all about this in Version 2. 

gingerbread
With Android 2.3, Google made some improvements/changes to its operating system. Most of 

them are not design related, but good to know about anyway.

Application Management

Gingerbread introduces a much stronger policing system to watch apps that drain the bat-

tery and shut them down when they are using to much power and running in the background. 

Additionally, it comes with a task manager tool that reports exactly which resources are being 

consumed by which apps and force stop any application.

Every App deserves a thunderbolt gesture.



Mutual Mobile Android Design Guidelines 31

Updated UX

Although it is not as redesigned as promised, there are still a 
couple of UI changes;

• Simplified Color; Google Version 2.3’s “simplified color scheme” includes 

a darker notification bar, cleaner status bar icons and  black based menus.

• A Fancy New Keyboard;  With Gingerbread, Google has redesigned the 

keyboard and claims that it is faster and more intuitive. It includes a built 

in dictionary as well as a user dictionary, An improved auto correct and 

speech to text functionality. It also supports multi touch.

• Improved Cut and Paste; Additionally, they have improved the cut and 

paste functionality. It simply requires a long press on website or text field 

to copy text to the clipboard.

New Gadgetry.

The Gingerbread operating system supports several new technologies that 

upcoming Android phones will offer.  

This includes;
• Gingerbread will offer support of near field communication. Soon users 

will be able to tap their devices against NFC sensors in order to exchange 

information (eventually including credit card payments

• A whole bunch of new sensors, including gyroscopes, gravity sensors, 

even barometers.

• Gingerbread also supports internet calling. Be advised, the carriers have 

to grant permission.

• New development tools to help design high-end video games.

Android 2.2

Android 2.3


	introduction
	sizes and resolution
	UI elements
	icons
	dialog and listview icons 
	widgets
	draw9patch
	gestures
	gingerbread

